CD-4MCu不锈钢特厚板
CD-4MCu 奥氏体不锈钢被认为是焊接的合金钢,可以用所有的融合物焊接,也可以进行电阻焊接。等温锻造要求模具和坯料在恒定温度下保持恒定,并且仅用于特殊的锻造工艺,例如塑性成形。镍还可显著降低奥氏体不锈钢的冷加工硬化倾向,这主要是由于奥氏体稳定性增大,减少以至了冷加工过程中的马氏体转变,同时对奥氏体本身的冷加工硬化作用不太明显,不锈钢冷加工硬化倾向的影响,镍降低奥氏体不锈钢冷加工硬化速率,与降低钢的室温及低温强度,提高塑性的作用,决定了镍含量的提高有利于奥氏体不锈的冷加工成形性能,提高镍含量还可减少以至18-8和17-14-2型铬镍奥氏体不锈钢中的δ铁素体,从而提高其热加工性能,但是,δ铁素体的减少对这些钢种的可焊接性不利会增大焊接热裂纹丝倾向,此外,镍还可显著提高铬锰氮(铬锰镍氮)奥氏体不锈钢的热加工性能,从而显著提高钢的成材率,在奥氏体不锈钢中,镍的加入以及随着镍含量的提高,导致钢的热力学稳定性增加,因此奥氏体不锈钢具有好的不锈性和耐yang化性介质的性能,且随着镍含量增加,耐还原性介质的性能进一步得到改善.值得指出,镍还是提高奥氏体不锈耐许多介质穿晶型应力腐蚀的wei一重要元素,在各种酸介质中镍对奥氏体不锈钢耐蚀性能的影响,需要指出,在高温高压水中的一些条件下,镍含量的提高导致钢和合金的晶间型应力腐蚀敏感性增加,但是这种不利作用会由于钢及合金中铬含量的提高而获得减轻或受到抑制.随磁卡奥氏体不锈钢中镍含量的提高,其产生晶间腐蚀的临界碳含量降低,即钢的晶间腐蚀敏感性增加,至于对奥氏体不锈钢耐点腐蚀及缝隙腐蚀的性能,镍的作用并不显著,此外,镍还提高奥氏体不锈钢的高温抗yang化性能,这主要与镍改善了铬的yang化膜的成分,结构和性能降低,并且镍含量越高越有害,这主要是由于钢中晶界处低熔点liu化镍所致,一般来说,简单的铬镍(及铬锰氮)奥氏体不锈钢仅用于要求不锈性和耐yang化性介质(比如xiao suan等)的使用条件下,钼作为奥氏体不锈钢中的重要合金元素加入到钢中使其使用范围进一步扩大,钼的作用主要是提高钢在还原性介质
CD4MCu
?
?
CD-4MCu合金名义上是26Cr-6Ni合金(C≤0.04),并加入钼和铜。此合金没有对应的变形钢种。合金CD-4MCu在铸态下是双相组织,是由奥氏体分布在铁素体基体中所组成。虽然碳化物析出受合金低碳含量所限,若不用固溶处理,它也会弥散在铁素体基体中,从而降低耐蚀性。合金基本上是铁素体的,它的屈服强度约为19Cr-9Ni奥氏体合金的两倍,并具有高硬度、好的拉伸塑性和令人满意的冲击韧性。合金高强度和高硬度同很好的耐蚀性相配合,特别适合在腐蚀(其中包括磨蚀和冲蚀)工作条件下使用。
?
一、CD-4MCu化学成分:碳C:≤0.04,锰Mn:≤1.0,硅Si:≤1.0,磷P:≤0.04,硫S:≤0.04,铬Cr:24.5~26.5,镍Ni:4.75~6.00,钼Mo:1.75~2.25,铜Cu:2.75~3.25。
?
二、CD-4MCu性能特点:含有比较高的Cr,Mo,N等元素,故钢的耐点蚀,耐缝隙腐蚀性能显著一般18-8Cr-Ni奥氏体不锈钢和18-14-2,18-14-3 Cr-Ni-Mo奥氏体不锈钢;由于具有α+γ双相结构且耐点蚀性优良,因而此钢耐氯化物应力腐蚀,耐腐蚀疲劳性能亦常用Cr-Ni奥氏体不锈钢;由于此钢优良的本质耐蚀性,时效后较高的硬度和α+γ双相结构,故蚀性也Cr-Ni奥氏体不锈钢,高铬铁素体不锈钢和非沉淀硬化型的α+γ双相不锈钢。
?
三、CD-4MCu热处理:固溶处理温度为1120℃,至少保温两小时,以确保温度均匀,慢冷到1010~1065℃,保温半小时,随后淬火。在较低的温度下保温,是为了避免铸件(特别是较厚断面的铸件)在淬火中开裂。热处理后的组织也是双相的,在铁素体基体中含35~40%的奥氏体。经固溶处理后,可进一步在480~510℃通过时效引起沉淀硬化来强化。时效反应的程度,以及合金在时效状态下的全部性能,其余包括耐蚀性、强度、冲击韧性和淬火开裂倾向是与复相处理方式有关,即与固溶处理温度的高低、时效温度和时效时间有关。因为合金在固溶处理后,在很多应用中具有足够的强度和很好的耐蚀性,它不常在时效状态下使用。
?
四、CD-4MCu应用领域:在许多腐蚀介质中的耐蚀性比CF合金好,广泛应用在氧化和还原的强suan工作条件下,在有氯的环境中具有特殊的抗应力腐蚀开裂的性能。
F6NM级马氏体不锈钢的典型钢种。“级马氏体不锈钢“由马氏体不锈钢改进冶炼工艺,降低碳含量,增加镍钼合金元素而成,性能常规马氏体不锈钢。
[图片表]
CD-4MCu 特厚板
weiligroup.b2b168.com/m/